Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
Q DP problem:
The TRS P consists of the following rules:
MINUS2(x, s1(y)) -> PRED1(minus2(x, y))
LE2(s1(x), s1(y)) -> LE2(x, y)
IF_MOD3(true, s1(x), s1(y)) -> MINUS2(x, y)
MOD2(s1(x), s1(y)) -> IF_MOD3(le2(y, x), s1(x), s1(y))
MINUS2(x, s1(y)) -> MINUS2(x, y)
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
MOD2(s1(x), s1(y)) -> LE2(y, x)
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MINUS2(x, s1(y)) -> PRED1(minus2(x, y))
LE2(s1(x), s1(y)) -> LE2(x, y)
IF_MOD3(true, s1(x), s1(y)) -> MINUS2(x, y)
MOD2(s1(x), s1(y)) -> IF_MOD3(le2(y, x), s1(x), s1(y))
MINUS2(x, s1(y)) -> MINUS2(x, y)
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
MOD2(s1(x), s1(y)) -> LE2(y, x)
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 3 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MINUS2(x, s1(y)) -> MINUS2(x, y)
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MINUS2(x, s1(y)) -> MINUS2(x, y)
Used argument filtering: MINUS2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LE2(s1(x), s1(y)) -> LE2(x, y)
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
LE2(s1(x), s1(y)) -> LE2(x, y)
Used argument filtering: LE2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
MOD2(s1(x), s1(y)) -> IF_MOD3(le2(y, x), s1(x), s1(y))
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
IF_MOD3(true, s1(x), s1(y)) -> MOD2(minus2(x, y), s1(y))
Used argument filtering: MOD2(x1, x2) = x1
s1(x1) = s1(x1)
IF_MOD3(x1, x2, x3) = x2
minus2(x1, x2) = x1
le2(x1, x2) = le
0 = 0
true = true
false = false
pred1(x1) = x1
Used ordering: Quasi Precedence:
[le, false] > true
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MOD2(s1(x), s1(y)) -> IF_MOD3(le2(y, x), s1(x), s1(y))
The TRS R consists of the following rules:
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
pred1(s1(x)) -> x
minus2(x, 0) -> x
minus2(x, s1(y)) -> pred1(minus2(x, y))
mod2(0, y) -> 0
mod2(s1(x), 0) -> 0
mod2(s1(x), s1(y)) -> if_mod3(le2(y, x), s1(x), s1(y))
if_mod3(true, s1(x), s1(y)) -> mod2(minus2(x, y), s1(y))
if_mod3(false, s1(x), s1(y)) -> s1(x)
The set Q consists of the following terms:
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
pred1(s1(x0))
minus2(x0, 0)
minus2(x0, s1(x1))
mod2(0, x0)
mod2(s1(x0), 0)
mod2(s1(x0), s1(x1))
if_mod3(true, s1(x0), s1(x1))
if_mod3(false, s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.